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One of the reasons restricting the use of conductors in railguns [1, 2] is the break of the current 
collector. This results from the current concentration in the neighborhood of the angle point A (Fig. 1), in 
the region with characteristic size A ~ p2/(#oV), where p2 is the specific resistance and V is the velocity of 
the body [3, 4]. 

In the present work, the method of reducing the current load in solid-state contact by use of a material 
with anisotropic (orthotropic) conductance is considered, and the current density distribution in a body 
consisting of many insulated conducting layers with specific resistance pl (z) is studied. The thickness of the 
layers satisfies the condition 61 << A << d, and the thickness of insulation 62 << d (d is the thickness of the 
body [armature]). Under such conditions, the distribution of the specific resistance in region 1 can be roughly 
considered continuous: pa (x) = pl (x)[1 + 62 (x)/61 (x)]. The armature current density (region 2, Fig. 1) has 
only component Ju; therefore, the equation of diffusion of the field into the armature wall with induction 
B = Bz in the system of coordinates of the armature can be written as 
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where E~ is the longitudinal component of the electric field strength; B and p: do not depend on the 
coordinate y; therefore, O E~/Oy is also a function of the x coordinate only and Ez is a linear function 
of y. In this case, Ex (x, 0) = j ,  (x, 0) p2, Ex ( x , - h )  = -j~p2 (j, is the component  of the rail current 
density. Thus, E ,  = j ,  (x, 0) p2 (1 + 2y/h) and Eq. (1) finally takes the form 

Ot =P2jz(x 'O)~+ ~xx \ #0 ~xx " (2) 

The boundary conditions are B (0) = Be and B (d) = 0. The current density j~ (z, 0) = - j ,  (z, h) can be 
found by calculation of the field in the rails. The quasistationary condition 10B/0tl << I(VVB)I (V is the 
velocity of the body) is commonly used. Then,  for the field in a rail with induction B = Bz (B~ = By = 0), 
we have [3] 

02B 02B 1 017 
Oz + + -L Oz = 0 (3) 

[,5, = p/(/.toV) is the thickness of the high-speed skin layer]. The numerical calculation of Eqs. (2) and (3) 
has shown that  the use of a body with orthotropic conduction allows one to reduce heating considerably. 
For example, for the case p: = 10 -6 f~ �9 m, V = 2.  103 m/sec,  B = 10 T, the maximum Joule heat was 
2- 1012 W / m  3, which is nearly 8 times lower than that in a medium with isotropic conduction. The main 
attention here is devoted to the possibility of further reducing heating by means of forced current distribution 
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Fig. 1. Diagram of railgun: accelerated body (1), contact rails (2) 

over the armature thickness, as in an analogous problem for stationary bodies [5-7], by the selection of the 
optimal dependence pa (x). 

The Green function for Eq. (3) computed by Y. A. Dreizin and A. A. Kulakov has the form [8] 

1 Y2 
- exp [-(z2 - z)/2A] f l  (r12/2A), (4) B* (x2, Y2) 4~rA r12 

where r12 is the distance between the points 1 (x, 0) and 2 (x2, y2); K1 is the MacDonald function. Formula 
(4) allows one to calculate the induction in the rails with arbitrary distribution of induction on the boundary: 

(x2) = f B* (x2, 0) B (x, 0) B dz. (5) 
- - C O  

Further conversions (see Appendix) allow us to relate the tangential and normal components of the current 
density on the boundary: 

jx(x,O)= - 1--~ f exp[- (x-~) /2A]{Ko[l (x-~) l /2A]--g l[ (x- -~) /2A]} jn(~)d~ (6) 
4~rA 

- - 0 0  

[j~ (x) = - ( l / p 0 )  OB/Ox]. Excluding j~ (x, 0) by the use of Eq. (2), we obtain an integrodifferential equation 
for induction in the contact region 0 < x < d: 

] d [ ~ ] {  [ ~ ]  [ ~ 1 }  0 ~ / ~ / ~ - - 0 "  (7/ 0 1 7  0 [pa_(_.x) 017 P2 / e x p  ' I(0 --K1 
Ot Ox t #0 ~-x 2rhA#0 o 

Instead of solving the direct problem [computation of the field in an accelerated body for a given function 
pa (x)], it is expedient to formulate the inverse problem, that is to find pa (z) = P~a (x) according to the given 
current distribution j~ (x). The simplest example of such a problem is the case where the skin-effect in an 
accelerated body is negligible, and the term OB/Ot in Eq. (7) can be omitted. Then, from this equation, we 
obtain the following function for the specific resistance: 

z t d I 
' 

fla ( x t )  --= fla (0)  r A h j  (x') o o 

T' (A' - ~') = exp [-(A' - (')] {K0 [[A' - ~'l] - K1 [(A' - ~')1}, 

where pa (0) is the specific resistance on the undersurface of the armature; x' = x/2A; ~' = ~/2A; A' = 
A/2A; A is the integration parameter. The ratio p' (z')/p~ (0) depends on two dimensionless parameters, 
P1 = p~/[~o~rVhp~ (0)] and P2 = p2d/[hp~ (0)]. The form of the function p~ (z')/pa (0) is determined by the 
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Fig. 2. Specific resistance distribution for J (x) = const: 
P1 = 0.00126 and P2 = 0.1 (1); P1 = 0.00126 and P2 = 0.05 (2); P1 = 0.00025 
and P2 = 0.1 (3); P1 = 0.000126 and P2 = 0.1 (4); and P1 = 0.000025 and 
P2 = 0.15 (5) 

relative current density distribution only. In particular, at jy (x) = const, the solution has the form 

x ! d I 

0 0 

Figure 2 gives the results of using this formula for the following parameters of the system: pa (0) = 
10 -s  f~ �9 m (which corresponds to the specific resistance of carbon plastic); the resistance of the steel rail is 
P2 ~ 10 -6 g~ �9 m. 

The results of the numerical solution of the problem in the range of parameters P1 = 1 0 - 4 - 1 0 - 3  

and P2 = 0.005-0.02 indicate that it is possible to ensure a given current distribution by using technically 
permissible distributions of specific resistance over the conducting layers of an anisotropic body. The function 
of the specific resistance, which decreases smoothly in the range from 10 -5 to 10-6-10 -7 ~ �9 m, corresponds 
to the modes considered. In the above particular case (V = 2 .10  3 m/sec, B = 10 T, pa = p2 = 10 -6 ~2. m), 
the transition from the uniform resistance distribution pa = const to p~ (z), which provides a constant current 
density (8), produces a 5-fold gain in heat dissipation. In this example, qmax can be reduced to 4- 1011 W / m  3. 

The selection of the current density of the form jy = const is not optimal; the inner layers of the 
armature, where p~ is higher, are heated much more than the outer ones. It would be more proper to ensure 
a function jy (x) such that all the layers have the same heat loads, i.e., at each point with the x coordinate 
the condition of constant power [7] holds. Thus, in the cross section of the body we have 

j2 v (x) Pa (x) = ~* (t), (9) 

where ~* (t) does not depend on x but can be a function of time. 
We transform (3) into the equation for the current density jy (x) = -(1/I.to)OB/Oz. To this end, we 

differentiate it termwise with respect to x: 

0jy 2p20jz  (z, O) 0 2 
#o 3t - h 3x + ~x 2 (p~ (x)j~ (z)). 

From the condition (9), it follows that jy (x) = 9~* (t)/pla/2 (x). Then, using (6), we obtain the equation 

( , )  , #o 0 ~ *  , P2 T [(x - ~ ) / 2 A ]  p~/2 (~) ~x2 
A/2 (=) 0t = (t) 0 

which admits a solution under the exponential ~* (t), when ~v* (t) = ~o~exp (ct). In this case, we come to a 
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Fig. 3. Specific resistanse distr ibution for dq/dt = const (x): R1 = 39.6, R2 = 
0.63, and R3 = 1 (1); R1 = 39.6, R2 = 6.3, and R3 = 0.25 (R1 = 39.6, 
R2 = 2.52, and R3 = 0.5) (2); R1 = 39.6, R2 = 12.6, and R3 = 0.25 (3); 
Ra = 198, R2 = 6.3, and R3 = 1 (4); and R1 = 158, R2 = 6.3, and R3 = 1 
(R1 = 39.6, R2 = 6.3, and R3 = 0.5) (5) 

nonlinear integrodifferential equation for the  function g = pa 112 (x): 

c#og = ~  
d 02 

p2 f o [(x - 0/2AI g (0  + (l/g) 
2~rAh 

o 

d 

In the case of a constant  field (c = 0), the equation is somewhat  simplified: 

d 
d p2 j f T ( x - ( )  d( 

Introducing the notat ion 

A (x', ~') = f ( K o  (x' - ~') - K,  (x' - ~')) exp (~' - x') dz',  
o 

we obtain the  nonlinear integral equation 

R2 
i i 1 [ 

g ' ( z )  g'(O) = -a----1 J A(x ' ,~ ' )g ' (~ ' )d~ '  (10) 
0 

[g' (x) = pi/2 (z)], which can be solved by subst i tut ion of the integral by a finite sum. The form of the function 
g' (x), and hence of pa (x), is determined by three dimensionless parameters:  R1 = 7r#oh/2p2, R2 = #oVd/2p2, 
and R3 = (p2/pa (0)) 1/2. The  reduced sys tem of nonlinear algebraic equations corresponding to Eq. (10) was 
solved numerically by the Newton method. It is noteworthy that  the i teration process does not converge at any 
combinat ion of the dimensionless parameters  R],2,3. Nevertheless, for some combinations of these parameters  
solutions were obta ined  and are presented in Fig. 3. 

We can assess the efficiency of reduction of Joule heating under the condition that  the heat release 
power is constant  in x compared  to the maximum speed of heat release at j (x) = const. In the first case, 

Bo 
j '  (0) - m d  
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Therefore, the heat release power at the point x = 0 is 

?'(o)Bo 2 

For the second mode [q' (z) = const], 

d (j,,2(z)p~(z)) O, 
dr 

(11) 

whence j "  (x) = j "  (0) " " (Pa (x)/Pa (0)) V2" Integrating the relation j = -(1/I.to)c3B/Oz and taking into account 
the latter equality, we obtain 

d 
�9 t t  n I t  1/2 Bo = .020 f(Pa (x)/Pa (0)) dx, 

0 

whence 
d 

Using the latter expression, for heating of the armature surface, we found 

32 dl O"a (0) (12) 
r = ,02~ ~ 

Comparing (1t) and (12), we see that  the transition from the distribution pa' (z) yielding j = const to 
a distribution p~(x) yielding ~' = const will additionally reduce the heat release power by a factor of (detr/d) 2. 
In this case, this value is close to 4. 

The results obtained allow us to optimize the distribution of the heat release power in the region of 
the current collector. However, the actual temperature distribution is also determined by the process of heat 
transfer from the heated armature to the relatively cold rail [9]. Therefore, the ult imate answer concerning the 
efficiency of the proposed optimization can be given only by solving the heat conduction equation together 
with the field equations. 

A p p e n d i x .  The  magnetic field in the rail can be expressed in terms of the field on the boundary and 
the fundamental  solution (4) according to the formula 

+cr 

B (x~, y~) = f B* (x2, y2) B (x, 0) dx. 

Thus, in the case of point contact, we have 

0 

B(x2, y2) -  41rA r12 2A ] k 2 A ]  
- -OO 

Using the integral representation of the function K: 
OO 

and then integrating with respect to the variable xl, we obtain the following expression for the magnetic field 
at an arbitrary point subject to boundary conditions defined above: 

B (z2, u2) = Bo exp (-ax2) exp - Y~- a2 + t 2 a 2 + t~ ) dr. 
2x 

0 

Here ~ = I/(2A); t is the variable connected with the integral representation of the function KI. 
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Hence, the expression for the z component of the current density can be obtained. 

jx (x2, Y2) = tt0 0y2 = 2~rg0 

It is of prime interest to determine the value of the current density on the boundary of the regions (in 
the contact zone), i.e., 

j~(z2,0) = B0exp( -ax2)a  (K0(al  l)- K, (alx2l)sign(x2)). 
2~rtto 

To assess these values, we can employ asymptotic dependences for the MacDonald functions and get 
an expression for the current density in the region ahead of (ax2 --~ co) and behind (ax2 ---* -c r  the contact 
zone. As a result, in the region ahead of the contact [sign (x2) > 0], we have 

B0 e• 
jx (x2, 0) ~ - - ,  

4#0 ~ x2 

while behind the contact 
B0 

jx (x2, O) -+ 
2#0 ~ / - ~ A  

An analysis of the relations obtained suggests that there are pronounced peculiarites as x2 --+ 0, i.e., 
in the point contact zone. 

We consider the influence of the transition from point contact to an arbitrary distribution of the normal 
component of the current density on the boundary. 

An expression for the x component of the current density in this case can be derived if we introduce 
di (xl) = jn (Xl) dxl in place of the coefficient i ~ = Bo/#o in (A.I), replace x2 by z2 - x], and perform 
integration. As a result of the above operations, expression (5) is transformed into the relation 

+oo 
jx(x2,0) = 1 / -4~r-'-A _ exp (-c~ (x2 -Z l ) ) (Ko(c~lx2-x l l ) -1(1  (c~lz2 - x l l )  sign (x2 -x l ) ) j , z (x l )dx l .  

R E F E R E N C E S  

1 .  

2. 

3. 

4. 

5. 

. 

7. 

8. 

9. 

J. P. Barber and C. L. MacDonald, "A Comparison of armature performance," IEEE Trans. Magn., 
22, No. 6 (1986). 
L. D. Thornhill, J. H. Battch, and J. L. Brown, "Armature options for hypervelocity railguns," IEEE 
Trans. Magn., 25, No. 1 (1989). 
G. C. Long, "Railgun current density distribution," IEEE Trans. Magn., 22, No. 6, 1597-1601 (1986). 
F. T. Young and W. F. Huges, "Rail and armature current distributions in electromagnetic launchers," 
IEEE Trans. Magn., 18, No. 1, 33-45 (1982). 
I. M. Karpova, V. V. Titkov, and G. A. Shneerson, "Turbulent currents in nonhomogenous media and 
the problem of reduction of Joule heating in a strong pulsed magnetic field," Izv. Akad. Nauk SSSR, 
Energ. Transp., No. 3, 122-127 (1988). 
G. A. Shneerson, Fields and Transition Processes in Superstrong Current Apparatus [in Russian], 
Moscow, Energoatomizdat (1992). 
G. A. Shneerson, "On minimization of Joule heating in magnetic-field diffusion into a media with 
coordinate-dependent conductivity," Pis'ma Zh. Tekh. Fiz., 18, No. 6, 18-21 (1992). 
A. P. Glinov and A. A. Kulakov, "On the asymptotics of the magnetic-field distribution in railguns in 
a current skinning zone," Preprint No. IA1~-5491/1, Moscow (1992). 
S. V. Stankevich and G. A. Shvetsov, "Ultimate velocities of plates accelerated by magnetic field," 
Prikl. Mekh. Tekh. Fiz., 35, No. 3, 10-17 (1994). 

205 


